IOPscience

Home Search Collections Journals About Contact us My IOPscience

Neutron diffraction study of the boride $Y(Fe_{11.04}Ti_{0.52}B_{0.43})Ti_{0.39}$: a new phase of a ThMn₁₂-type intermetallic interstitial compound

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1995 J. Phys.: Condens. Matter 7 2587 (http://iopscience.iop.org/0953-8984/7/13/008)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.179 The article was downloaded on 13/05/2010 at 12:51

Please note that terms and conditions apply.

Neutron diffraction study of the boride $Y(Fe_{11.04}Ti_{0.52}B_{0.43})Ti_{0.39}$: a new phase of a ThMn₁₂-type intermetallic interstitial compound

Zhang Dan[†], Zhang Zhi-dong[†], Y C Chuang[†], Zhang Bai-sheng[‡], Yang Ji-lian[‡] and Du Hong-lin[‡]

† Institute of Metal Research, Academia Sinica, Shenyang 110015, People's Republic of China

‡ Institute of Atomic Energy, Beijing 102413, People's Republic of China

Received 6 July 1994, in final form 25 October 1994

Abstract. A sample with nominal composition YFe_{10.5}TiB_{0.5} has been prepared through careful processing. X-ray diffraction analysis revealed that the main phase in the sample is in the tetragonal ThMn₁₂-type structure (space group, 14/mmm), and a small amount (less than 3%) of α -Fe exists as a second phase. Neutron diffraction measurements indicated that, in the tetragonal structure, the boron atoms occupy the 8i sites, substituting for a few Ti atoms, while the substituted Ti atoms enter the interstitial 2b sites. The real composition of the main phase was determined to be Y(Fe_{11.04}Ti_{0.52}B_{0.43})Ti_{0.39}.

1. Introduction

The structure and magnetic properties of ternary compounds of the type $RFe_{12-x}M_x$ ($R \equiv$ rare earth; $M \equiv Ti$, V, Cr, Mo, W, etc) have been studied by numerous investigators [1-4]. These compounds crystallize in the tetragonal $ThMn_{12}$ structure in which there is only one crystallographic site for the rare earth and three non-equivalent sites for the M and Fe atoms. High Curie temperatures and high uniaxial anisotropies near room temperature make these systems promising starting materials for permanent-magnetic application [5, 6].

It has been discovered that the rare-earth-iron intermetallics of the $RFe_{12-x}Ti_x$ type can absorb moderate quantities of nitrogen [7]. Neutron diffraction measurements not only confirm that the nitrides maintain the tetragonal structure of their virginal compounds $RFe_{12-x}Ti_x$ but also indicate that the nitrogen atoms occupy the interstitial 2b sites, which leads to drastic changes in magnetic properties [7]. To date, the main disadvantage of the nitrided rare-earth-iron intermetallics is their thermal instability, which means they are easy to convert to RN_x and α -Fe phases at high temperatures.

In our previous work [8], we prepared various borides with the nominal composition $RFe_{12-x}(Ti,V)_xB_y$, trying to investigate the effects of boron atoms in the $ThMn_{12}$ -type rare-earth-iron intermetallics. Magnetic measurements, including high-field magnetization measurements and AC initial-susceptibility measurements, have shown that all the Curie temperatures, the iron moments and the anisotropies of the compounds undergo some changes upon the addition of boron [8]. Therefore, the position of boron atoms is the key to understanding the structure of the boride and interpreting the effects of boron on crystal-field and magnetic properties. In order to determine the positions of boron in these borides, we investigated the structure of $YFe_{10.5}TiB_{0.5}$ alloy by means of x-ray diffraction and neutron diffraction.

Figure 1. A part of the x-ray diffraction pattern of the (YFe_{10.5}TiB_{0.5}) sample.

2. Experimental details

The sample was prepared by arc melting the elemental constituents in a purified argon atmosphere, with the nominal composition $YFe_{10.5}TiB_{0.5}$; the melting point is 1286 °C (determined by the differential thermal analysis). To ensure homogeneity, the ingot was inverted and remelted. Then, the ingot wrapped in Mo foil was sealed in an evacuated quartz tube filled with high-purity argon and was annealed at 950 °C for 2 weeks, followed by rapid cooling to room temperature. The ThMn₁₂-type structure of the main phase was identified using x-ray diffraction with Cu K α radiation.

Neutron diffraction measurements were performed on the powder diffractometer at the heavy-water research reactor at the Institute of Atomic Energy at Beijing. The powder sample was packed in a thin-wall cylindrical vanadium cell of 0.5 cm diameter and 5 cm high. The diffraction data were collected at room temperature with a neutron wavelength of 1.184×10^{-8} cm by scanning from $2\Theta = 10^{\circ}$ to 80° in steps of 0.15° . The diffraction patterns obtained were analysed by means of Rietveld's [9] profile technique. For the coherent scattering lengths, we used the values 0.7750×10^{-12} cm for yttrium, 0.9540×10^{-12} cm for iron, -0.3300×10^{-12} cm for titanium and 0.5300×10^{-12} cm for boron. Indication of the agreement between observed and calculated intensities, both nuclear and magnetic, is given by the discrepancy factor R_{total} :

$$R_{\text{total}} = \sum_{i} \left| S_i(\text{obs}) - \frac{1}{c} S_i(\text{calc}) \right| / \sum_{i} S_i(\text{obs})$$

Figure 2. A part of the neutron diffraction pattern of the (YFe_{10.5}TiB_{0.5}) sample.

where $S_i(obs)$ and $S_i(calc)$ are the observed and calculated integrated intensities, to be summed over all reflections, and c is a scaling factor. Similar expressions are used to obtain the separate R_{nucl} - and R_{magn} -values.

3. Results and discussion

The results of x-ray diffraction with Cu K α radiation are shown in figure 1. It is confirmed from the pattern that the main phase in the sample is of the ThMn₁₂-type structure, and there is a little α -Fe.

The neutron diffraction diagram obtained at room temperature is shown in figure 2. The observed diffraction lines are interpreted by nuclear and magnetic coherent scattering. The diffraction patterns of the sample can be indexed in a polyphase program, while the main phase is in a body-centred tetragonal cell (space group, I4/mmm), with parameters $a = (8.509 \pm 0.004) \times 10^{-8}$ cm and $c = (4.808 \pm 0.003) \times 10^{-8}$ cm.

The observed and calculated intensities for the sample are listed in table 1.

The results of the refinement procedure for the main phase, including the coordinates of the crystallographic sites, the occupancy factors for different atoms in these sites and the magnetic moments are given in table 2.

The position parameters for Y, Fe and Ti are very close to those obtained for $YFe_{11}Ti$ [10]. The Fe atoms are found to occupy the 8i, 8j and 8f sites, whereas the Ti atoms reside in the 8i sites. The most important result is the location of boron atoms, as shown in table 1.

Table 1. Calculated and observed intensities at 300 K.

hkl	20 (deg)	$I_{calc}(nucl)$	Icalc(mag)	Icalc(total)	Iobs(total)
200	15.996	694	48	742	742
101	16.261	212	10	222	183
301	28.048	910	9	919	953
002	28.514	377	0	377	505
400	32.315	2935	50	2985	3046
321	32.453	3884	43	3927	3993
202	32.862	2867	11	2878	2916
420	36.254	1919	40	1959	2030
411	36.379	1393	34	1427	1429
222	36.749	3934	28	3962	3851
440	46.351	490	3	493	431
521	46.453	115	0	115	103
422	46.757	411	1	412	394
303	50.212	275	0	275	283
512	51.169	238	0	238	195
620	52.208	186	I	187	161
611	52.301	185	0	185	160
323	53.042	1469	2	1471	1297
541	55.055	588	4	592	652
442	55.324	247	1	248	273
413	55.770	373	2	393	654
532	50.002	455	4	430	484
6031	57.719	1310	4	1320	1955
710	58 026	272	4	280	205
550	58 036	235	1	236	233
004	59.016	876	ů L	876	926
640	60 222	247	1	748	253
622	60.561	1535	4	1539	1530
721	62,830	367	Ó	367	433
730	63.988	117	0	117	186
712	66.753	437	1	438	452
552	66.753	372	0	372	384
800	67.637	888	1	889	898
651	67.716	120	0	120	121
642	67.955	925	1	926	952
613	68.351	112	0	112	118
404	68.905	1355	0	1355	1468
820	70.016	344	I	345	368
543	70.720	367	1	368	375
424	71.265	1034	1	1035	1013
732	71.503	191	0	191	183
660	72.360	184	0	184	165
633	73.054	975	1	976	870
531	74,730	4/1	0	4/1	440
214	74.743	602	0	407	607
040 877	70.902	433	0	433	407
723	77 641	255	0	255	245
444	78 168	406	0	406	379
534	79,299	244	õ	244	228
662	79.529	178	õ	178	166
761	81.554	320	õ	320	302
930	82.600	169	ã	169	165
624	82.669	160	õ	160	157
325	83.337	631	0	631	658

Table 2. Coordinates of sites, occupancy factors for different atoms and magnetic moments in different sites. $a = (8.509 \pm 0.004) \times 10^{-8}$ cm; $c = (4.808 \pm 0.003) \times 10^{-8}$ cm. $R_{\text{nucl}} = 6.48\%$; $R_{\text{magn}} = 8.46\%$; $R_{\text{total}} = 5.51\%$.

Atom	Site	x	у	z	Number of atoms	μ _z (μ _B)
Y	2a	0.000 00	0.000 00	0.000 00	2.00	0.00
Fe	8 i	0.35610	0.000 00	0.000 00	6.09	1.83
Ti	8i	0.35610	0.000 00	0.000 00	1.05	0.00
В	8i	0.35610	0.000 00	0.000 00	0.87	0.00
Fe	8j	0.277 00	0.500 00	0.000 00	8.00	1.71
Fe	8f	0.250 00	0.250 00	0.250 00	8.00	1.66
Ti	2b	0.000 00	0.000 00	0.500 00	0.78	0.00

Figure 3. Schematic representation of the structure of $Y(Fe_{11.04}Ti_{0.52}B_{0.43})Ti_{0.39}$.

The boron atoms occupy the 8i sites, substituting for some of the Ti atoms. Surprisingly, it is found that the substituted Ti atoms can enter the interstitial position 2b, like nitrogen atoms. Thus the real formula composition of the main phase is $Y(Fe_{11.04}Ti_{0.52}B_{0.43})Ti_{0.39}$.

A schematic representation of the structure of $Y(Fe_{11.04}Ti_{0.52}B_{0.43})Ti_{0.39}$ is shown in figure 3.

From the analysis of our neutron diffraction data, it is believed that the B atoms take the substitution position and substitute for the transition-metal atoms which enter the interstitial position. The α -Fe content in the sample is about 3%.

We have examined in the same way another sample with the nominal composition $(YFe_{11}Ti_{0.8}B_{0.2})$ [11]. The results shows that the main phase also has the ThMn₁₂-type structure, and the boron atoms prefer to occupy the substitution position, with the substituted Ti atoms in the 2b site. There is still a little α -Fe in the sample (less than 4%).

In conclusion, from the analysis of our neutron diffraction data, it can be derived that the boron atoms in the ThMn₁₂-type intermetallics prefer to occupy the substitution position, totally different from the nitrogen atoms which occupy only the interstitial position. Meanwhile, it is found that the substituted transition-metal atoms can enter the interstitial position 2b. Therefore, this work will be helpful for understanding the structure of borides of ThMn₁₂ type and its relationship to the magnetic properties.

Acknowledgments

This work has been supported by the National Natural Foundation of China, the President Foundation of Chinese Academy of Sciences, the Committee of Science and Technology of Shenyang, and the Science Foundation for Nuclear Industry, China.

References

- [1] de Boer F R, Huang Y K, De Mooij D B and Buschow K H J 1987 J. Less-Common Met. 135 199
- [2] Buschow K H J, De Mooij D B, Brouha M, Smit H H A and Thiel R C 1988 IEEE Trans. Magn. MAG-24 1611
- [3] Arnold Z, Algarabel P A and Ibarra M R 1993 J. Appl. Phys. 73 5905
- [4] Jarczyk M and Chistjakov O D 1989 J. Magn. Magn. Mater. 82 239
- [5] Algarabel P A and Ibarra M R 1990 Solid State Commun. 74 231
- [6] Xu Xie and Shaheen S A 1993 J. Appl. Phys. 73 6248
- [7] Yang Ying-chang, Zhang Xiao-dong, Kong Liu-Shu and Qi Pan 1991 Solid State Commun. 78 313
- [8] Chuang Y C, Zhang Dan, Zhao T, Zhang Z D, Liu W, Zhao X G and de Boer F R 1995 J. Alloys Compounds at press
- [9] Rietveld H M 1969 J. Appl. Crystallogr. 2 65
- [10] Yang Ying-chang, Sun Hong, Kong Lin-shu, Yang Ji-lian, Yong-fan Ding, Zhang Bai-sheng and Lan Jin 1988 J. Appl. Phys. 64 5968
- [11] Zhang Dan, Zhang Z D and Sun X K 1995 J. Magn. Magn. Mater. at press